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Abstract. This paper investigates the role played by different modes of
representations both in the discovery of new objects of study in mathe-
matical practice and in facilitating understanding, using examples taken
from cluster algebras as a case study. Cluster algebras arose at the turn
of the 21st century through work by S. Fomin and A. Zelevinsky [2]
with the aim of providing an algebraic and combinatorial framework for
studying dual canonical bases, which had previously been defined ge-
ometrically by G. Lusztig in the early 1990s. I use this case study to
argue that the availability of multiple ways of expressing mathematical
content can bring to light new classes of mathematical objects which are
seen as highly salient from a practice point of view. In such situations,
examining the choice of one form of representation over another can also
yield insights into how such expressions support various different aims,
such as building familiarity with certain concepts or studying connections
between diverse mathematical theories and domains.
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Studying the use of signs (e.g. notations or figures) in mathematical practice can
help us to better understand how the computational and cognitive constraints
of humans as finite agents shape our mathematical theories [5]. Indeed, the
choice of a notational system is significant for how well it is suited for a given
task [3]. One of the roles for visual representations which has been studied in
recent literature is how they may support the emergence of new mathematical
concepts and results [1, 4].

In this paper, I examine some of the visual representations appearing in the
context of cluster algebras (described in further detail below) not only in terms
of their fruitfulness, but also for the role they play in facilitating certain kinds of
tasks. In tasks which are commonly performed with paper and pencil (or tablet
and stylus), there is an apparent preference for choosing certain kinds of repre-
sentation over others by the mathematicians working on cluster algebras. This
paper investigates the specific features of different representations in relation to
what is required by particular tasks.
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Cluster algebras were introduced into the mathematical literature by S.
Fomin and A. Zelevinsky [2] in order to study connections between dual canon-
ical bases and total positivity, which had previously been investigated by G.
Lusztig in the early 1990s. From the outset, cluster algebras were intended to
give an algebraic and combinatorial interpretation of dual canonical bases which
Lusztig had defined geometrically. In present day, cluster algebras constitute an
especially active area of research, with the paper by Fomin and Zelevinsky [2]
that first introduced the notion of cluster algebras into the literature having
received more than 2300 citations since its publication. Significantly, numerous
‘deep connections’ quickly arose between cluster algebras and other areas of
mathematics––including quiver representations, Poisson geometry, Teichmüller
theory, group theory, integrable systems, and mathematical physics.

A cluster algebra is a commutative ring which is defined over an ambient field
F of rational functions in n variables and which enjoys a particular combinatorial
structure. What sets a cluster algebra apart from other sorts of commutative
rings is that “a cluster algebra is not presented at the outset via a complete set
of generators and relations” ([6], p. 1) but instead constructed from some initial
data––contained in a so-called seed––which defines the cluster algebra. A ‘seed’
contains a cluster, i.e., a set of distinguished generators called cluster variables,
along with an exchange matrix, which encodes the rules for obtaining new cluster
variables from previous ones via an iterative procedure called mutation. Shortly
after the introduction of cluster algebras, it was found that the rules governing
mutation can be encoded not only in (certain kinds of) matrices, but also in
quivers, which are directed graphs but viewed from a new perspective.

Let us consider mutation in the context of quivers. A quiver is a quadruple
Q = (Q0, Q1, s, t), where the elements i ∈ Q0 are called vertices; the elements
α ∈ Q1 are called arrows; and the maps s : Q1 → Q0 and t : Q1 → Q0 are called
the source and target functions, respectively. For each arrow α ∈ Q1, s(α) gives
us the vertex i ∈ Q0 which is the starting point of α. Similarly, t(α) gives us the
vertex j ∈ Q0 where α terminates. A loop is an arrow α such that s(α) = t(α).
A 2-cycle is a pair of mutually distinct arrows α and β where s(α) = t(β) and
s(β) = t(α). Graphically, we have

•

Loop

• •

2-cycle

.

Consider a finite quiver Q without any loops or 2-cycles. Mutation µk(Q) of Q
in direction k ∈ Q0 is performed according to the following procedure:

(a) For each subquiver i → k → j in Q, add a new arrow i → j.
(b) Reverse the direction of each arrow α in which either the source or target

function coincides with k, i.e., s(α) = k or t(α) = k.
(c) Remove both arrows of any 2-cycles which may have arisen in step (a).
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This procedure may look something like the following in graphical form:
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⇝
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⇝
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i q

Cluster algebras that are defined using quivers belong to a particular class,
which corresponds to a special case of the general setting introduced in [2] that
makes use of skew-symmetrizable matrices for defining cluster algebras. A square
integer matrix B = (bij) is skew-symmetrizable if there are positive integers dl
such that dibij = −djbji for all i and j. Matrix mutation proceeds according to
certain rules defined for changing the entries of the matrix. We can associate a
signed adjacency matrix B(Q) = (bij) to a quiver Q defined as above. B(Q) is a
skew-symmetric matrix in which bij = −bji = ℓ, where ℓ is the number of arrows
from vertex i to vertex j. Mutating B(Q) corresponds to mutating Q, which we
can observe in our specific example if, by a common abuse of notation, we allow
k = 1, j = 2, i = 3, and q = 4:

0 2 −1 0
−2 0 1 1
1 −1 0 0
0 −1 0 0

 ⇝


0 −2 1 0
2 0 −1 1
−1 1 0 0
0 −1 0 0

 .

For certain tasks which involve computation performed “by hand” (i.e. with
pencil and paper), such as mutation, it seems to be the case that cluster al-
gebra theorists often favor using quivers over using matrices. Although these
different forms of representations are intended to encode the same information
in their role in cluster algebras, and are from this perspective seen as equiva-
lent, the differences in their visual appearances is striking. Close examination of
the visual features of quivers and matrices, respectively, in relation to compu-
tation and other various tasks, may yield some insights into the importance of
representations in mathematical practice more broadly.
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