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1 Background

Deep learning is a novel field, with truly “deep” algorithms only being possible since the introduction
of ResNets in 2015 (1). There has been a proliferation of model architectures to target different
modalities of data (2; 3), achieve goals in distinct ways (4; 5), and incorporate new methods to
improve model performance and ease of training (6; 7; 8). The details of these configurations are
critical to understanding new approaches, implementing models, and innovating on existing designs.

However, there is no standard framework for communicating models. If even one operation
is miscommunicated, accurate implementation is impossible. Textual descriptions can easily miss
critical details. Prevailing diagrams are ad-hoc and are especially prone to not communicating the
axis over which operations act. Attached code can be challenging to interpret and is of varying
quality. Often, the actions of a model are hidden behind many layers of abstraction. What a model
should do, its high-level structure, and its novel contributions are not communicated with code.
Code also depends on the specific style—two algorithms could be almost entirely the same, differing
in some vital detail. Yet, if their implementation style is different, this fundamental difference can
be laborious to identify. Code, then, is an inefficient means to communicate the details of models.

2 The Approach: Formal Diagrams

Formal diagrams overcome these shortfalls. Deep learning algorithms are typically constituted of
independent blocks of data, which are organised along axes. Operations act on specific axes. For
instance, we can take an operation over rows or columns. These are distinct operations and must be
communicated differently. If we can communicate the different blocks of data in memory and the
axes over which operations operate, we can communicate all the details of a deep learning model
in a clear, comprehensive, and visual manner. This reduces the risk of failing to communicate a
key detail, as is often the case with textual or ad-hoc diagrams (See Fig 1). Additionally, we are
provided with a conceptual description that can verify code and serve as a framework-independent
abstraction for understanding an algorithm. Furthermore, formal algorithms allow for developing
and applying robust tools to analyse architectures.

The diagrams used are heavily inspired by category theory. Category theory is the formal
mathematics of composition and abstraction and has a rich heritage of diagrammatic schemes

1



Figure 1: The original transformer
diagram from Attention is All You
Need (2), annotated to highlight
unclear details. Critical informa-
tion is missing regarding the origin
of Q, K, and V values (red and
blue), and the axes over which op-
erations act (green).

(9; 10; 11). Neural Circuit Diagrams use many tools from category theory. They can be seen as
extensive syntactic sugar applied to the two-category diagrams of Marsden (10; 12) to imitate the
rich description of axes provided by (tensor) monoidal string diagrams (9; 13) while also allowing
for the manipulation of independent data (Cartesian products).

Dashed lines separate independent data arrays, while solid lines indicate axes. For instance,
two lines labelled x and y, followed by a dashed line, followed by a line labelled z, indicate that we
are working with one array of Rx×y and another of Rz, for total size of x× y + z. This allows us
to keep track of the shape of data. Dashed lines separate parallel operations on separate arrays.
Operations on specific axes are placed on that axis, making this essential detail of models clear.
Taken together, we can clearly show a neural network in Fig 2.

3 Completed Work

The initial thesis developed Neural Circuit Diagrams and the tools to display key architectures,
including transformers and convolutional image recognition models. The applied aspect has been
peer-reviewed and published in Transactions on Machine Learning Research (14). Additional ar-
chitectures have been diagrammed, with significant interest online, showing the interest in robust
diagrams. Aspects of their mathematical details were developed in my honours thesis and a preprint
(15; 16).
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Figure 2: We see that the incom-
ing data of size x̄ × m is copied.
A learned linear layer is applied
over the m axis in the top section.
Overall, this results in the trans-
formation of data of size x̄×m to
x̄× dff . A line written above an
operation represents a SIMD (sin-
gle instruction, multiple data) op-
eration. The diagram automati-
cally captures the preservation of
the x̄-sized axis. Element-wise op-
erations such as non-linear acti-
vations do not change the data
size and hover above the array on
which they act. This diagram is
sufficient for implementation and
captures all the details of the al-
gorithm’s behaviour.

4 Further Work

The diagrams aim to replace how we communicate deep learning architectures with a formal method-
ology that can serve as a systematic basis for analysis, innovation, and optimisation. This is the
target end state of Neural Circuit Diagrams but will require much further work.

Diagrams aim to be the basis for formal analysis. They are inspired by category theory and
can provide a categorical description, offering access to the sophisticated tools of category theory
(17; 18). Categorical descriptions also let the probabilistic aspects of deep learning models – such
as sampling or quantisation, to be considered (19; 20). However, formalising diagrams to the rigour
of categorical diagrams requires further work. Currently, they can be viewed as extensive syntactic
sugar applied to categorical diagrams. This syntactic sugar may break the algebraic properties of
categorical diagrams (9).

Diagrams contain extensive metadata about algorithms, such as how operations are parallelised
into SIMD operations, or whether they can be “fused” – reduced to a low memory algorithm which
avoids an intermediate save and load (21; 22). The dominant machine learning framework is Py-
Torch. It provides access to a library of operations and the automatic generation of backpropagation
graphs. However, it does not provide the metadata for automatically fusing and optimising algo-
rithms. This means massive potential gains in performance are missed (21; 22). Formal diagrams
can provide this information, offering optimal implementations of machine learning models.
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[17] B. Fong, D. I. Spivak, and R. Tuyéras, “Backprop as Functor: A compositional perspective on
supervised learning,” in 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pp. 1–13, IEEE, 2019.

[18] R. Cockett, G. Cruttwell, J. Gallagher, J.-S. P. Lemay, B. MacAdam, G. Plotkin, and D. Pronk,
“Reverse derivative categories,” Oct. 2019. arXiv:1910.07065 [cs, math].

[19] T. Fritz, T. Gonda, P. Perrone, and E. F. Rischel, “Representable Markov Categories and Com-
parison of Statistical Experiments in Categorical Probability,” Theoretical Computer Science,
vol. 961, p. 113896, June 2023. arXiv:2010.07416 [cs, math, stat].

[20] P. Perrone, “Markov Categories and Entropy,” CoRR, vol. abs/2212.11719, 2022. arXiv:
2212.11719.

[21] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “FlashAttention: Fast and Memory-Efficient
Exact Attention with IO-Awareness,” June 2022. arXiv:2205.14135 [cs].

[22] T. Dao, “FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning,”
Oct. 2023.

5


	Background
	The Approach: Formal Diagrams
	Completed Work
	Further Work
	Acknowledgements

